Matched Pairs Sections 20.6, 20.7

Lecture 37

Robb T. Koether

Hampden-Sydney College

Mon, Mar 28, 2016

- $lue{1}$ When to Use t
- When to Use z
- 3 Independent vs. Dependent Samples
- Matched Pairs
- 5 Example
- 6 Assignment

- When to Use t
- 2 When to Use z
- Independent vs. Dependent Samples
- Matched Pairs
- Example
- 6 Assignment

- Use the t statistic if we are using s in place of σ and
 - The sample size is small ($n \le 15$) and the data are close to normal, or

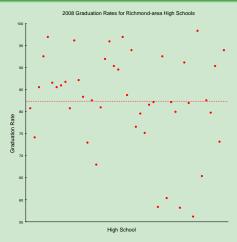
- Use the t statistic if we are using s in place of σ and
 - The sample size is small ($n \le 15$) and the data are close to normal, or
 - The sample size is larger (15 < n < 40) and the data are not strongly skewed nor do they contain any outliers, or

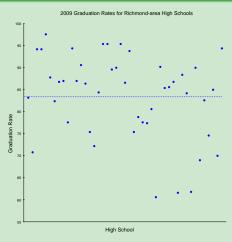
- Use the t statistic if we are using s in place of σ and
 - The sample size is small ($n \le 15$) and the data are close to normal, or
 - The sample size is larger (15 < n < 40) and the data are not strongly skewed nor do they contain any outliers, or
 - The sample size is large $(n \ge 40)$.

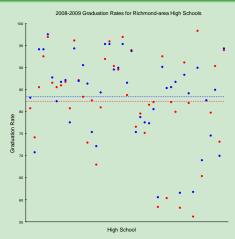
- When to Use t
- When to Use z
- Independent vs. Dependent Samples
- Matched Pairs
- 5 Example
- 6 Assignment

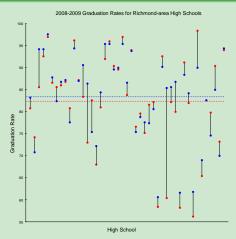
- Use the z statistic if we know σ and
 - The data are close to normal, or
- Beyond a sample size of 100 or so, it makes no difference whether we use *t* or *z*. The two distributions are nearly identical.

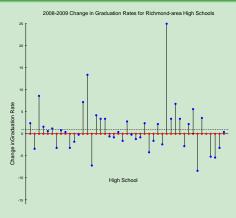
- Use the z statistic if we know σ and
 - The data are close to normal, or
- Beyond a sample size of 100 or so, it makes no difference whether we use *t* or *z*. The two distributions are nearly identical.


- Use the z statistic if we know σ and
 - The data are close to normal, or
 - The sample size is large $(n \ge 40)$.
- Beyond a sample size of 100 or so, it makes no difference whether we use *t* or *z*. The two distributions are nearly identical.


- When to Use t
- 2 When to Use z
- 3 Independent vs. Dependent Samples
- Matched Pairs
- 5 Example
- 6 Assignment


Definition (Bivariate Data, Matched Pairs)


Bivariate data are data in which each datum is a pair of observations. These are also called paired data. Typically the two values are called x_1 and x_2 . The sample of x_1 values and the sample of x_2 values are called matched pairs, or paired samples, or dependent samples.


- Matched pairs are often obtained in "before" and "after" studies.
- By comparing the mean before treatment to the mean after treatment, we can determine whether the treatment had an effect.
- To make direct comparisons of the two samples, they must be measuring the same sort of thing.
- Clearly, paired samples must be of the same size.

Matched Pairs

- Was there an overall improvement in the graduation rate?
- That is, is the average difference greater than 0?

Independent Samples

- On the other hand, with independent samples, we simply take one sample from one population and another sample from another population.
- There is no logical way to pair the data.
- Furthermore, the independent samples could be of different sizes.
- We will study independent samples in Chapter 21.

- 1 When to Use t
- 2 When to Use z
- Independent vs. Dependent Samples
- Matched Pairs
- 5 Example
- 6 Assignment

Matched Pairs

- Let the pairs be denoted (x_1, x_2) .
- Let $x = x_2 x_1$.
- We will study the case where the population of differences has a normal distribution.
- As usual, let μ and σ denote the mean and standard deviation of the population of differences.

Hypothesis Testing for Matched Pairs

- Let the pairs be denoted (x_1, x_2) .
- Let $x = x_2 x_1$.
- We will study the case where x has a normal distribution.
- As usual, let μ and σ denote the mean and standard deviation of the population of differences.

Hypothesis Testing for Matched Pairs

 \bullet The only null hypothesis for μ that we will consider with matched pairs is

$$H_0: \mu = 0.$$

• We will consider any of the three alternatives

$$H_1: \mu < 0.$$

$$H_1: \mu > 0.$$

$$H_1: \mu \neq 0$$

Hypothesis Testing for Matched Pairs

Example (Hypothesis Testing for Matched Pairs)

 If the population is normal or approximately normal, then the test statistic is

$$t=\frac{\overline{x}-0}{s/\sqrt{n}}.$$

• If the sample size is large, then we can use either t or z.

- 1 When to Use t
- 2 When to Use z
- Independent vs. Dependent Samples
- Matched Pairs
- 5 Example
- 6 Assignment

- Suppose that a group of 10 students take a math placement test.
- Let the variable x_1 represent their scores on that test.
- Then they are given an Algebra refresher course and they retake the placement test.
- Let the variable x_2 represent their scores on the retest.

Example (Hypothesis Testing for Matched Pairs)

The following table shows the results

Student	1st Score (x ₁)	2nd Score (x ₂)	Difference (x)
1	83	81	
2	62	63	
3	80	76	
4	73	80	
5	68	78	
6	67	71	
7	68	69	
8	69	78	
9	80	88	
10	83	79	

Example (Hypothesis Testing for Matched Pairs)

The following table shows the results

Student	1st Score (x ₁)	2nd Score (x ₂)	Difference (x)
1	83	81	-2
2	62	63	1
3	80	76	-4
4	73	80	7
5	68	78	10
6	67	71	4
7	68	69	1
8	69	78	9
9	80	88	8
10	83	79	-4

Example (Hypothesis Testing for Matched Pairs)

• Test the hypothesis, at the 10% level, that the refresher course improved their grades on the placement test.

Example (Hypothesis Testing for Matched Pairs)

Then the hypotheses are

(1) Let x_1 be the first test score, let x_2 be the second test score, and let $x = x_2 - x_1$.

$$H_0: \mu = 0.$$

$$H_1: \mu > 0$$

Example (Hypothesis Testing for Matched Pairs)

(1) Let x_1 be the first test score, let x_2 be the second test score, and let $x = x_2 - x_1$. Then the hypotheses are

$$H_0: \mu = 0.$$

 $H_1: \mu > 0$

(2)
$$\alpha = 0.10$$
.

Example (Hypothesis Testing for Matched Pairs)

(1) Let x_1 be the first test score, let x_2 be the second test score, and let $x = x_2 - x_1$.

$$H_0: \mu = 0.$$

 $H_1: \mu > 0$

- (2) $\alpha = 0.10$.
- (3) Let $t = \frac{\overline{x} 0}{s/\sqrt{n}}$.

Then the hypotheses are

Example (Hypothesis Testing for Matched Pairs)

(4) Compute the value of the test statistic.

- (4) Compute the value of the test statistic.
 - Enter the x_1 values into L_1 and the x_2 values into L_2 .

- (4) Compute the value of the test statistic.
 - Enter the x_1 values into L_1 and the x_2 values into L_2 .
 - ullet Evaluate the difference L_2-L_1 and store it in L_3 .

- (4) Compute the value of the test statistic.
 - Enter the x_1 values into L_1 and the x_2 values into L_2 .
 - Evaluate the difference $L_2 L_1$ and store it in L_3 .
 - Use 1-Var Stats L₃ to get \overline{x} and s.

- (4) Compute the value of the test statistic.
 - Enter the x_1 values into L_1 and the x_2 values into L_2 .
 - Evaluate the difference $L_2 L_1$ and store it in L_3 .
 - Use 1-Var Stats L₃ to get \overline{x} and s.
 - We find that $\overline{x} = 3$ and s = 5.354.

- (4) Compute the value of the test statistic.
 - Enter the x_1 values into L_1 and the x_2 values into L_2 .
 - Evaluate the difference $L_2 L_1$ and store it in L_3 .
 - Use 1-Var Stats L₃ to get \overline{x} and s.
 - We find that $\overline{x} = 3$ and s = 5.354.
 - Then

$$t = \frac{3}{5.354/\sqrt{10}} = \frac{3}{1.693} = 1.772.$$

Example (Hypothesis Testing for Matched Pairs)

(5) p-value = tcdf(1.772,E99,9) = 0.0551.

- (5) p-value = tcdf(1.772,E99,9) = 0.0551.
- (6) Reject H_0 and conclude that the students' scores on the placement test are higher after taking the Algebra refresher course.

- 1 When to Use t
- 2 When to Use z
- Independent vs. Dependent Samples
- Matched Pairs
- Example
- 6 Assignment

Assignment

Assignment

- Read Sections 20.6, 20.7.
- Apply Your Knowledge: 11, 12, 13.
- Check Your Skills: 25, 26.
- Exercises 35, 39, 42, 48, 51.